REDUCTION IN THE USE OF NATURAL GAS IN HOT-DIP GALVANIZING PROCESS

ENERGY TRANSITION

TABLE OF CONTENTS

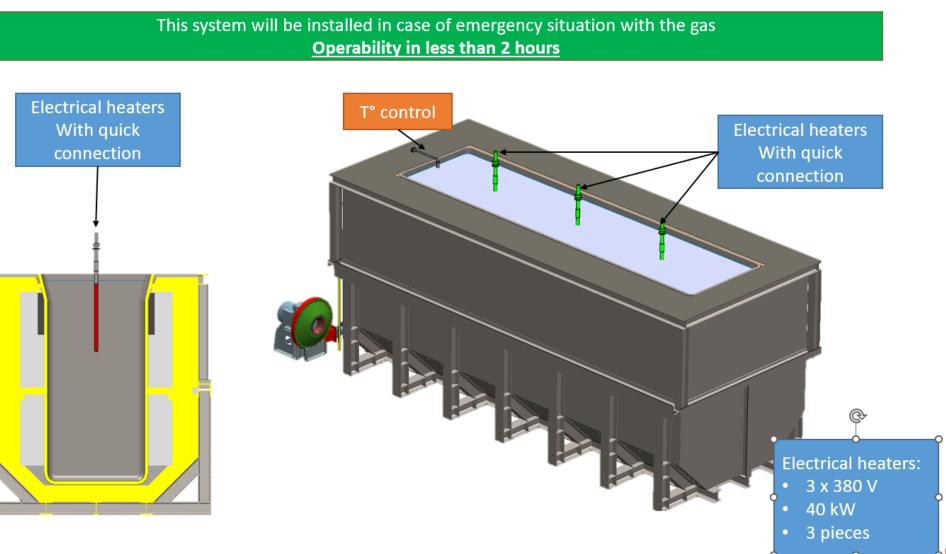
- Introduction Energy transition Reduction of natural gas dependency in HDG
- Emergency electrical heating backup toolkit to keep zinc liquid in galvanizing baths
- Hydrogen blends in the natural gas
- Full electrical solution for galvanizing bathes
 - Heating by radiant panel for metallic zinc kettle
 - Heating by immersed heating tubes for ceramic zinc bath
 - Induction heating system for ceramic zinc bath

Conclusion

INTRODUCTION – ENERGY TRANSITION – REDUCTION OF NATURAL GAS DEPENDENCY IN HDG

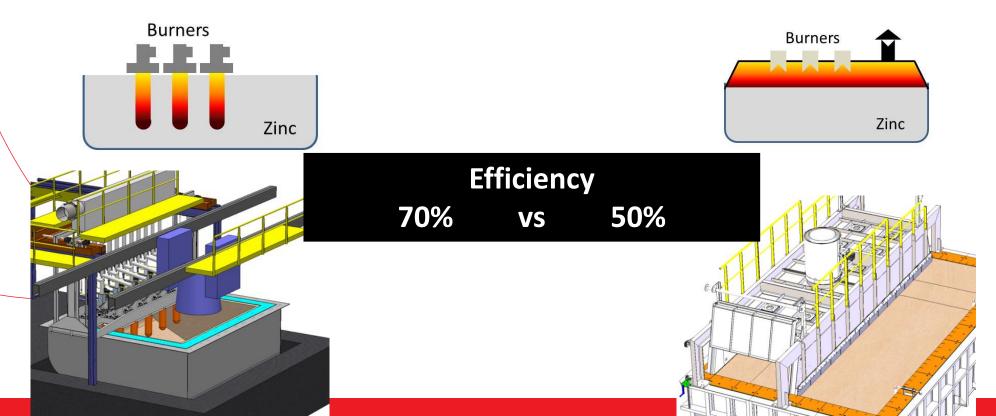
- □ Fight against climate change Green Deal
- Security of natural gas supply
- Dependency of Russian gas imports

\rightarrow SEARCHING SOLUTIONS FOR NATURAL GAS REDUCTION



EMERGENCY ELECTRICAL HEATING BACKUP TOOLKIT TO KEEP ZINC LIQUID IN GALVANIZING BATHS

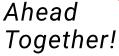
Gas power cut: a potential reality :


Facing the risk of temporary **gas power cut**, many concerns are faced by the galvanizers to keep their zinc molten.

HYDROGEN BLENDS IN THE NATURAL GAS

Technology using nozzle mix burners using self recuperative burners accept very high level of hydrogen in natural gas up to 100%. Such technology find their advantage in some specific configurations and must be assessed case by case.

\rightarrow Immersion burners: a technology saving energy and space and zinc !



HYDROGEN BLENDS IN THE NATURAL GAS

- However special attention for NOx emission with nozzle mix burners : With H2-NG blends \rightarrow increase of adiabatic flame temperature and faster flame speed \rightarrow increase of NOx formation through the ZELDOVICH mechanism (THERMAL NO)
- The impact on NOx may become not acceptable for blends with more than 60% hydrogen (with some burners in some area where NOx limitation are drastic)

- Additional attention to safety should be performed by a specific risk assessment while using 100% Hydrogen . No standards exist yet regarding safety for 100% Hydrogen burners.
- Not (yet?) clear strategy for the distribution of hydrogen in the grid.

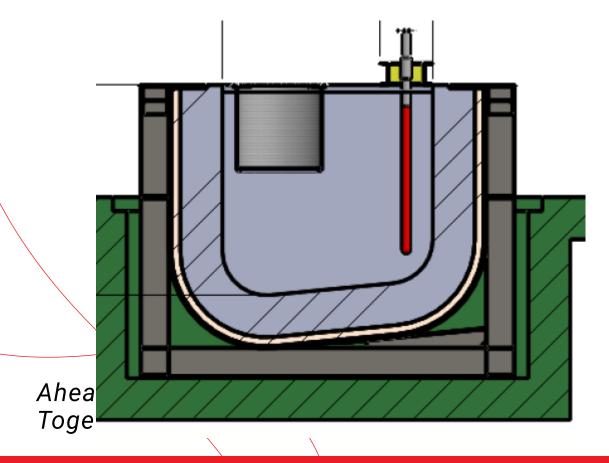
FULL ELECTRICAL SOLUTION FOR GALVANIZING BATH

Heating by radiant panels for metallic zinc kettle

ADVANTAGE :

- Homogenous heating surface (pure radiation)
- Easy tunning of the power
- Better efficiency compared to gas burner and induction heating system
 95% electrical efficiency with radiant panels compare to 70% combustion efficiency and 70% for induction efficiency
- Designed to be able to easily change a module

Inconveniences :


- Infrastructure of electrical power supply
- Preventing following of wearing of the kettle must be well done

FULL ELECTRICAL SOLUTION FOR GALVANIZING BATH

Heating by immersed electrical heating tubes (for ceramic zinc bath)

Typical power per element : 40 kW Compact solution High efficiency Easy maintenance

FULL ELECTRICAL SOLUTION FOR CERAMIC GALVANIZING BATH

Induction heating system for ceramic zinc bath

Main advantage :

- Solution with heating elements on specific location on one side of the bath
- Complete bath surface accessible for operators
- Not big maintenance for 5 years

INCONVENIENCES

- Efficiency not as high as other electrical solution (70% compared to 95%)
- Required to empty the bath and rebricking one part for maintenance every 5 years
- Lost of a consequent power to heat is taking place if one element has a failure (50% of power)

CONCLUSION

Technological solutions exist to reduce natural gas dependency

However necessary to study case by case by considering several parameters

- Conversion or new installation
- Government subsidy CO2 tax
- Acceptable emission (NOx emission by local authorities)
- Working condition (zinc temperature)
- availability of energy (NG, hydrogen, electricity)
- CAPEX OPEX study taking into accompt assumption on energy price

FIB BELGIUM S.A.

Avenue Landas 4 B-1480 SAINTES BELGIUM +32 2 332 17 17 info@fib.be www.fib.be

